The Inner Structure of Collisionless Magnetic Reconnection
نویسنده
چکیده
Magnetic reconnection is a driving engine of solar flares, stellar flares, and quite probably bursty events in high-energy astrophysical sites. The reconnection process is driven by a small-scale “dissipation region” surrounding the reconnection point (X-point), at which a plasma ideal condition breaks down. Recently, kinetic particle-in-cell (PIC) simulations have revealed that the electron ideal condition is violated in many locations in collisionless reconnection: i.e., the nonidealness cannot locate the dissipation region. To overcome this problem, we have proposed an electron-frame dissipation measure as a new marker of the dissipation region [1],
منابع مشابه
Structure of the dissipation region during collisionless magnetic reconnection
Collisionless magnetic reconnection isstudied using a 2 1/2-dimensional hybrid code including Hall dynamics and electron inertia. The simulations reveal that the dissipation region develops a two-scale structure: an inner electron region and an outer ion region. Close to the X line is a region with a scale of the electron collisionless kin depth, where the electron flows completely dominate tho...
متن کاملIon diamagnetic effects in gyrofluid collisionless magnetic reconnection
Ion diamagnetic effects on collisionless magnetic reconnection are investigated by means of numerical simulations of a Hamiltonian gyrofluid model. The work is focused in particular on the effects of inhomogeneous density equilibria in the large ∆′ regime. The linear growth rates predicted by asymptotic theory are recovered. Nonlinearly the island shape is strongly modified and the flow changes...
متن کاملCoupling between global geometry and the local hall effect leading to reconnection-layer symmetry breaking.
The coupling between the global reconnection geometry and the local microphysics, caused by the Hall effect, is studied during counterhelicity plasma merging in the magnetic reconnection experiment. The structure of the reconnection layer is significantly modified by reversing the sign of the toroidal fields, which affects the manifestation of the Hall effect in the collisionless regime. The lo...
متن کاملTwo-scale structure of the electron dissipation region during collisionless magnetic reconnection.
Particle-in-cell simulations of collisionless magnetic reconnection are presented that demonstrate that reconnection remains fast in very large systems. The electron dissipation region develops a distinct two-scale structure along the outflow direction. Consistent with fast reconnection, the length of the electron current layer stabilizes and decreases with decreasing electron mass, approaching...
متن کاملCollisionless magnetic reconnection with arbitrary guide-field
A new set of reduced equations governing two-dimensional, two-fluid, collisionless magnetic reconnection with arbitrary guide-field is derived. These equations represent a significant advance in magnetic reconnection theory, since the existing reduced equations used to investigate collisionless reconnection are only valid in the large guide-field limit. The new equations are used to calculate t...
متن کامل